Update August 2023 Data Incident Update Click Here

Imaging Services

St. Elizabeth's offers a full spectrum of imaging services ranging from the simplest ultrasound images to the most complicated and high-tech computed tomography (CT), magnetic resonance imaging (MRI) and nuclear medicine.

The Imaging department is committed to providing our customers with exceptional service through digital radiography. Digital radiography provides high-quality computer-generated images that are sent directly to the Picture Archival Communication System (PACS) and quickly available for review by physicians. Patients experience shorter exam times and decreased radiation dose with digital imaging when compared to conventional film imaging. 

We have three locations to make getting your imaging exam done as convenient as possible. To schedule an exam at any location, call 217-757-6565.

Patient in CT scanner with technician assisting

CT Scans

Computed Tomography (CT or CAT scan) is a non-invasive procedure that enables medical professionals to obtain accurate diagnostic information on many areas of your body. The CT uses x-rays to produce a cross-sectional image (or slice) of the areas of your body being examined. Our state-of-the-art CT scanners are capable of capturing entire organs in seconds. They provide outstanding image detail for any exam, including cardiac, head, spine, and abdominal and vascular studies.

This technology allows us to image smaller structures with great detail and resolution in even the most challenging applications. CT captured images give your doctor an unprecedented level of detail needed to treat disease and life-threatening illnesses. CT at St. Elizabeth’s Hospital gives:

  • Greater diagnostic confidence
  • Faster scans
  • Optimized radiation doses
  • Shorter breath holds for less discomfort
  • Non-invasive exams with no recovery time

The radiologist will review the images from your CT scan and provide a detailed report to your physician. Your physician will discuss these results with you and explain what they mean, relative to your health. 

Patient in an MRI machine with technician looking on

MRI

St. Elizabeth’s Hospital offers the cutting-edge 1.5T magnetic resonance imaging (MRI) system. The system is the quietest MRI on the market to the extent that there is no ear protection necessary for maximum patient comfort. The 1.5T MRI delivers high-speed, high-resolution imaging that produces accurate and reliable results with unmatched image quality. The new system design features superior coil technology that allows clinicians to perform multiple exams without repositioning the patient.

In comparison to other higher magnetic resonance machines, the patient friendly 1.5T offers significant advantages including wide frame opening and larger cabin space. The magnet is housed in a comfortable, relaxing environment designed to minimize patient anxiety.The MRI capabilities include non-contrast MRA technique, a method of non-invasive angiography that images the arterial and/or venous system without contrast injection. This is especially useful for patients with decreased renal function because of direct side effects caused by contrast injections. The system also offers sophisticated breast imaging and guidance for breast biopsy.

Nuclear Medicine

Nuclear medicine is a radiology subspecialty using trace amounts of radioactive material to diagnose and treat many diseases. Nuclear imaging does not require surgery. Instead, it relies on radioactive drugs or radiotracers.

The radiotracer can be injected, swallowed or inhaled as a gas, depending on your test. It gives off gamma rays, which are detected by a Nuclear Medicine scanner, a special camera or a probe. Using a computer, your health care team will measure the amount of the radiotracer absorbed by the body to produce images offering details of your body to help in your diagnosis and treatment.

At St. Elizabeth’s Hospital, Nuclear Medicine is used to:

  • Analyze the functions of organisms such as kidney, gallbladder and lungs
  • Check bones for fractures, tumors, etc.
  • Visualize blood flow
  • Monitor presence or spread of cancer
  • Locate infection in the body